Tâm đường tròn ngoại tiếp tam giác có khái niệm và tính chất như thế nào? Đồng thời, cách xác định, bài tập thực hành trình bày và đáp án ra sao? Tất cả những vấn đề trên sẽ được chuyên trang giải đáp chi tiết trong bài viết sau đây.
Tâm đường tròn ngoại tiếp tam giác là gì?
Phân môn Hình học 9 chứa đựng nhiều kiến thức quan trọng. Điều này đòi hỏi các em cần nắm vững khái niệm, tính chất mới có thể giải đúng các bài tập. Vì thế, hãy dành thời gian đọc ngay nội dung dưới đây để hiểu thêm.
1 – Khái niệm
Đường tròn ngoại tiếp tam giác được hiểu là đường tròn đi qua tất cả các đỉnh của tam giác đó. Đồng thời, tâm của đường tròn ngoại tiếp tam giác chính là giao điểm của ba đường trung trực tại tam giác đó.
Tâm đường tròn ngoại tiếp tam giác
Ta có: Đường trung trực của đoạn thẳng AB chính là đường thẳng đi qua trung điểm M của AB. Đồng thời, chúng còn vuông góc với AB.
Bên cạnh đó, mọi điểm I thuộc trung trực AB đều có IA = IB. Ba đường trung trực của tam giác đồng quy tạo một điểm.
Ta gọi I là giao điểm của ba đường trung trực của tam giác ABC. Như vậy, ta có IA = IB = IC, điểm I là tâm đường tròn ngoại tiếp của tam giác ABC. Đường tròn ngoại tiếp tam giác chính là đường tròn đi qua ba đỉnh của tam giác đó.
Mặt khác, đường tròn ngoại tiếp tam giác có nhiều dạng bài tập khác nhau. Điển hình như:
- Dạng toán 1: Yêu cầu viết phương trình đường tròn nội tiếp tam giác khi biết toạ độ ba đỉnh.
- Dạng toán 2: yêu cầu tìm tâm của đường tròn ngoại tiếp tam giác khi biết được tọa độ của ba đỉnh.
- Dạng toán 3: Thực hiện tìm bán kính đường tròn nội tiếp tam giác.
2 – Tính chất
Tâm đường tròn ngoại tiếp có những tính chất quan trọng sau:
- Mỗi một tam giác chỉ có duy nhất một đường tròn ngoại tiếp.
- Tâm của đường tròn ngoại tiếp một tam giác chính là giao điểm giữa ba đường trung trực của tam giác.
- Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền.
- Ta xét tam giác đều, tâm của đường tròn ngoại tiếp và nội tiếp tam giác sẽ trùng với nhau.
Cách xác định tâm đường tròn ngoại tiếp tam giác
2 cách xác định tâm đường tròn ngoại tiếp tam giác các em cần đặc biệt lưu tâm. Bởi kiến thức này xuất hiện trong rất nhiều bài tập, bài kiểm tra và kỳ thi quan trọng. Cụ thể:
Xác định tâm đường tròn ngoại tiếp tam giác
Cách 1:
- Thực hiện viết phương trình đường trung trực của hai cạnh bất kỳ trong tam giác.
- Tìm giao điểm hai đường trung trực chính là tâm của đường tròn ngoại tiếp tam giác.
Cách 2:
- Ta gọi điểm I có toạ độ là (x;y) là tâm của đường tròn ngoại tiếp tam giác ABC. Như vậy, IA = IB = IC = R.
- Tìm toạ độ tâm đường tròn ngoại tiếp tam giác.
Toạ độ tâm I chính là nghiệm của phương trình: IA2 = IB2; IA2 = IC2.
Tâm của đường tròn ngoại tiếp tam giác cân ABC tại điểm A nằm trên đường cao AH.
Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm cạnh huyền.
Tâm của đường tròn ngoại tiếp tam giác đều là trọng tâm của tam giác.
Một số bài tập thực hành
Muốn củng cố kiến thức về tâm đường tròn ngoại tiếp tam giác chúng ta sẽ đi vào làm một số bài tập. Các em có thể tham khảo nội dung cũng như cách giải chi tiết ngay sau đây:
Bài 1
Yêu cầu xác định tâm và bán kính của đường tròn ngoại tiếp tam giác ABC. Biết rằng tam giác ABC đều với các cạnh là 6cm.
Hình vẽ
Lời giải:
Ta gọi điểm D là trung điểm của cạnh BC, điểm E là trung điểm của cạnh AB. Ngoài ra, cạnh AD sẽ giao với cạnh CE tại điểm O.
Theo đề bài ra ta có tam giác ABC đều nên suy ra đường trung tuyến cũng là đường cao, đường phân giác và là đường trung trực của tam giác.
Từ những điều trên ta có thể suy ra O là tâm của đường tròn ngoại tiếp tam giác.
Tam giác ABC có CE là đường trung tuyến, suy ra CE cũng chính là đường cao.
Áp dụng định lý Py ta go vào tam giác vuông AEC ta có:
CE2 = AC2 – AE2 = 62 – 32 = 27 suy ra C3 = 3.
Bên cạnh đó ta có điểm O là trọng tâm của tam giác ABC nên suy ra: CO = CE = 3 = 2.
Như vậy, tâm của đường tròn ngoại tiếp tam giác ABC có trọng tâm O và bán kính là OC = 2.
Bài 2
Tam giác ABC cân tại A, đường cao AD, BE và CF cắt nhau tại H. Yêu cầu chứng minh tứ giác AEHF là tứ giác nội tiếp và xác định tâm I của đường tròn ngoại tiếp của tứ giác đó.
Hình vẽ
Lời giải:
Ta gọi điểm I chính là trung điểm của cạnh AH. Bên cạnh đó, HF vuông góc với AF (căn cứ theo giả thiết) nên suy ra tam giác AFH vuông tại điểm F.
I chính là trung điểm của cạnh huyền AH nên suy ra IA = IF = IH (1).
Ta có HE vuông góc với cạnh AE (căn cứ theo giả thiết) nên suy ra tam giác AEH vuông tại điểm E. Điểm I là trung điểm của cạnh huyền AH.
- IA = IF = IH (2)
Căn cứ vào điều (1) và (2) ta có thể suy ra được IA = IF = IH = IE. Hay nói các khác là điểm I cách đều bốn đỉnh là A, E, H và F, như vậy ta nhận định tứ giác AEHF nội tiếp đường tròn có tâm I chính là trung điểm của cạnh AH.
Bài 3
Yêu cầu tìm toạ độ tâm của đường tròn ngoại tiếp tam giác ABC. Biết rằng các điểm của tam giác ABC có tọa độ là A(1;2), B(-1; 0), C(3;2).
Lời giải:
Ta gọi điểm I có toạ độ là (x; y) là tâm của đường tròn ngoại tiếp tam giác ABC.
Một số bài tập tâm đường tròn ngoại tiếp tự giải
Ngoài những bài tập trên đây chuyên trang còn tổng hợp một số nội dung về tâm đường tròn ngoại tiếp tam giác. Các em hãy vận dụng kiến thức, công thức trên đây để đưa ra đáp án chính xác.
Bài 1
Cho tam giác ABC, đường cao AD và BE cắt nhau tại điểm H và cắt đường tròn O ngoại tiếp tam giác ABC lần lượt tại điểm I và K. Yêu cầu:
- Chứng minh tứ giác CDHE nội tiếp đường tròn và xác định tâm của đường tròn ngoại tiếp tứ giác đó.
- Chứng minh tam giác CIK cân.
Bài 2
Cho tam giác ABC có ba góc nhọn nội tiếp với đường tròn O tâm R. Theo đó, ba đường của tam giác là AF, BE và CD cắt nhau tại điểm H. Yêu cầu chứng minh tứ giác BDEC nội tiếp đường tròn và xác định tâm I của đường tròn ngoại tiếp tứ giác đó.
Bài 3
Chi tam giác ABC cân tại điểm A, cạnh AB = cạnh AC nội tiếp đường tròn tâm O. Đồng thời, đường cao AQ, BE, CF cắt nhau tại một điểm. Yêu cầu:
- Chứng minh tứ giác AEHF chính là tứ giác nội tiếp đường tròn. Đồng thời, xác định tâm của đường tròn ngoại tiếp tứ giác đó.
- Cho bán kính của đường tròn là tâm I = 2cm, góc BAC = 50 độ. Yêu cầu tính độ dài cung EHF của đường tròn tâm I và diện tích của hình quạt tròn IEHF.
Như vậy, chúng ta đã được tìm hiểu chi tiết về tâm đường tròn ngoại tiếp tam giác. Hi vọng những thông tin do chuyên trang cung cấp đã mang đến nhiều kiến thức hữu ích. Chúc các em học tốt và hoàn thành tất cả các bài tập nhanh chóng, hiệu quả.